Steward and Gaylor (2015) Matched CPS Sample Sizes for 1993-2013 time period

Big Data. Bureau of Labor Statistics. Survey data. Employment Big Data.  Those are all things that calculating worklife expectancy for U.S. workers requires.  Worklife expectancy is similar to life expectancy and indicates how long a person can be expected to be active in the workforce over their working life.  The worklife expectancy figure takes into account the anticipated to time out of the market due to unemployment, voluntary leaves, attrition, etc.

Overall the goal of our recent work is to update the Millimet et al (2002) worklife expectancy paper and account for more recent CPS data.

The data for all years is shown below.  Ultimately there were over 590,000 data points used in the analysis.

Table 2.  Matched CPS Sample Sizes 1993-2013
Female Male
Year Less than High School High School Some College College Less than High School High School Some College College Total
1993 3,766 7,326 4,898 3,452 3,376 5,619 4,280 3,935 36,652
1994 3,539 7,019 5,357 3,619 3,097 5,477 4,411 4,013 36,532
1995 3,082 6,161 5,086 3,545 2,664 4,815 4,086 3,938 33,377
1997 3,079 6,172 4,771 3,488 2,723 4,857 3,926 3,723 32,739
1998 2,839 6,113 4,873 3,672 2,694 4,952 3,995 3,834 32,972
1999 2,709 6,027 4,987 3,770 2,513 4,830 4,134 3,923 32,893
2000 2,692 5,930 5,009 3,915 2,463 4,899 4,052 4,204 33,164
2001 2,545 5,806 4,971 3,901 2,458 4,919 4,232 4,016 32,848
2003 1,096 3,218 2,579 2,411 1,019 2,701 2,122 2,470 17,616
2004 2,579 6,372 5,803 5,009 2,394 5,307 4,745 4,819 37,028
2005 2,039 5,378 5,146 4,673 1,867 4,632 4,270 4,285 32,290
2006 2,297 5,500 5,608 4,657 2,131 4,953 4,263 4,389 33,798
2007 2,147 5,730 5,466 5,060 2,076 5,133 4,344 4,592 34,548
2008 2,159 5,659 5,787 5,281 2,040 5,212 4,593 4,826 35,557
2009 2,027 5,637 5,780 5,556 2,023 5,062 4,776 4,976 35,837
2011 1,845 4,844 5,106 5,136 1,786 4,603 4,176 4,432 31,928
2012 1,733 4,849 4,930 4,956 1,779 4,693 4,151 4,616 31,707
2013 1,658 4,542 5,061 5,109 1,668 4,579 4,271 4,650 31,538
Total 43,831 102,283 91,218 77,210 40,771 87,243 74,827 75,641 593,024

Notes:

The CPS data was matched using the algorithm similar to Millimet et al (2002) and Peracchi and Welch (1995).  Households in rotation 1-4 were matched using the household identifier number to the same household in rotations 5-8 of the following year. Individuals had to have the same sex, race and be a year older in rotation 5-8 to be determined a match.

 

FLSA OT report for individuals working in automotive body and related repair occupations

In this post, we look at the weekly overtime (OT) hours typically worked by those who work in automotive body and related repair occupations.

Many of the employees that work in these jobs are not exempt from FLSA overtime pay and earn 1.5 times pay for hours worked over 40 in a given week.

The tabulations below are based on U.S. BLS survey data. The BLS job title groups are insightful, generally containing more specific job titles with similar knowledge, skills, and abilities (KSA), but can be more broad than a particular company’s job title listing. Also, some companies may have the job title listed here as exempt from FLSA or state OT due to their specific job assignments. The BLS does not make a distinction as to if the job title is exempt or non-exempt from OT.

Occupational Group Title Percent of OT Workers Average Hours of OT 1 out of every 4 (25%) OT workers works at least
Automotive Body and Related Repairers 26.92% 13.3 hours 60 hours

U.S. BLS data inddicates that approximately 26.92% of automotive body and related repairers work overtime hours in a given week.  On average, these workers that have FLSA overtime work approximately 13.3 hours a week in OT. The average regular or straight time pay rate of theise workers in the U.S. is approximately 18.77 an hour.  The average FLSA OT rate, not including supplemental pay such as non-discretionary bonus pay is 28.16 an hour.

Source: BLS (CPS March)

What’s a pension band?

A pension band is a figure that is used when calculating the monthly benefit for a defined benefit pension program.  A pension band figure, which is typically changes each year, is generally a dollar amount that the person will receive monthly for each year of service with the employer when they retire..  The pension band generally varies by job title/grade level/occupation covered by a pension plan.. Once assigned, the job title, grade level and occupation will generally remain in that band unless the job title, grade level and occupation (by location) are later reclassified to a different pension band.

Example of Basic Monthly Benefit Calculation.

The following hypothetical example shows how a basic monthly benefit is calculated assuming: •

You are in pension band 115.

The monthly benefit for pension band 115 is $55.49

In this example, the monthly benefit for a person with 30 years of credited service would be

Monthly benefit for pension band 115 ($ 55.49 Multiplied by 30 years of net credited service x 30 Basic monthly benefit =  $1,664.70

Comparsion of CPS matched data sets – Millmet et al (2002) to Steward and Gaylor (2015)

Big Data. Bureau of Labor Statistics. Survey data. Employment Big Data.  Those are all things that calculating worklife expectancy for U.S. workers requires.  Worklife expectancy is similar to life expectancy and indicates how long a person can be expected to be active in the workforce over their working life.  The worklife expectancy figure takes into account the anticipated to time out of the market due to unemployment, voluntary leaves, attrition, etc.

Overall the goal of our recent work is to update the Millimet et al (2002) worklife expectancy paper and account for more recent CPS data. Their paper uses data from  the 1992 to 2000 time period. Our goal is to update that paper using data from 2000 to 2013. The main goal of the paper is to see if estimating the Millimet et al (2002) econometric worklife models with more recent data changes the results in the 2002 paper in any substantive way.

 

Our approach is two fold.  First we matched the BLS data cohorts based on the Millimet et al. (2002) and Peracchi and Welch (1995) papers. In a nutshell the CPS matching routine involves matching incoming and outgoing cohorts across a given year.  Once the data is matched, we then look at the work status of the individuals to determine if they were active or in active across the year that they were interviewed by the BLS. . We were able to create a match CPS data set of 201,797 individuals where as the Millimet et al. (2002) found 200,916 matched individuals.

Table 1. Comparsion of CPS cohort matched data sets
Year Millimet et al.  (2002) Steward and Gaylor (2015)
1992/93 37,709 36,652
1994/95 34,418 33,377
1996/97 31,691 32,739
1997/98 32,276 32,972
1998/99 32,083 32,893
1999/2000 32,739 33,164
Total 200,916 201,797

Notes:

The CPS data was matched using the algorithm similar to Millimet et al (2002) and Peracchi and Welch (1995).  Households in rotation 1-4 were matched using the household identifier number to the same household in rotations 5-8 of the following year. Individuals had to have the same sex, race and be a year older in rotation 5-8 to be determined a match.

 

Worklife expectancy for U.S. workers – updating the Millimet et al. (2002) econometric model of worklife

Big Data. Bureau of Labor Statistics. Survey data. Employment Big Data.  Those are all things that calculating worklife expectancy for U.S. workers requires.  Worklife expectancy is similar to life expectancy and indicates how long a person can be expected to be active in the workforce over their working life.  The worklife expectancy figure takes into account the anticipated to time out of the market due to unemployment, voluntary leaves, attrition, etc.
Overall the goal of our recent work is to update the Millimet et al (2002) worklife expectancy paper and account for more recent CPS data. Their paper uses data from  the 1992 to 2000 time period. Our goal is to update that paper using data from 2000 to 2013. The main goal of the paper is to see if estimating the Millimet et al (2002) econometric worklife models with more recent data changes the results in the 2002 paper in any substantive way.
In addition we also wanted to supplement and expand on a few additional topics. The additional topics included looking at different definitions of educational attainment,  adding in reported disability, and looking at occupational effects on worklife expectancy.
Our approach is two fold.  First we matched the BLS data cohorts based on the Millimet et al. (2002) and Peracchi and Welch (1995) papers. In a nutshell the CPS matching routine involves matching incoming and outgoing cohorts across a given year.  Once the data is matched, we then look at the work status of the individuals to determine if they were active or in active across the year that they were interviewed by the BLS.
Using this matched data we next replicated the work of Millimet et al. (2002)  using the 1992 to 2000 CPS data as they did in their paper. In general the Millimet et al. (2002) econometric model uses a standard logistic regression framework to estimate transitional probabilities based on a two state labor market  framework where a person is either active or in active in the workforce.
The methodology begins by estimating logistic regression using individuals who were active when first interviewed.  Independent variables such as the occupation, gender, marital status and number of children are included in the logistic regression. A separate regression is estimated for individuals who are inactive at the start of the BLS interview.  Separate active and inactive regressions are also estimated for certain factors of interest, such as education attainment level and reported disability status.
The logistic regression equations provide the probabilities that are conditional on the labor force attachment of the individual at the time of the interview. The conditional probabilities yield the transitional probabilities for initially active or in active individuals. For example, a person who is active at the start of a period could be either active or inactive in the next period.  The transitional probabilities obtained from the logistic regression is used to calculate the probability that a person who is active at the start of a period could be either active or inactive in the next period in this example.
As described in the Millimet et al (2002) paper, the expected work life for each age is obtained recursively by working backwards from an assumed terminal year (T+ 1).  The terminal year is the year in which after no one is assumed to be active.  In the analysis a terminal age of 80 or 85 is used.
Using the model we began by replicating the Millimet et al. (2002) econometric model.  After we replicated the model, we then performed some additional work and expanded logistic regression worklife equations.  The results of our estimation are shown in the tables that are attached.
As for the results, overall there are several findings. First we were able to create a match CPS data set of 201,797 individuals where as the Millimet et al. (2002) found 200,916 matched individuals.
Overall we match their results very closely as well.  For example Millimet et al. (2002) found that a male who was 26 years old with a less than a high school education had a 27.27 years WLE remaining while we found that person had 26.319 years remaining during our replication. They found that the same age person with a high school had 32.89 years remaining while we found 32.728 years remaining. The replication was particularly good for both less than high school and high school levels of educational attainment.
The WLE  numbers are close but not quite as close for college and some college. This is primarily due to the fact that we use different definitions of some college and college then Millimet et al. (2002)  did in their 2002 paper.
Overall, the worklife expectancy estimated using more recent data from 2000-2013 is shorter then in the earlier time period (1992-2000) data set. This is true for younger worker (18-early 40’s); younger workers from the more recent cohorts have a shorter expected work life then younger workers in the earlier cohorts.  Conversely, while older workers in their 40s and 50s have a slightly longer worklife expectancy in the later time period data set. We are in the process of determining the statistical significance of these differences.
We also looked at the worklife expectancy for individuals with and without a reported disability. Disability was not covered in the Millimet et al. (2002) paper. As has been well reported, the disability measure in the BLS data is very general in nature. Accordingly the applicability of the BLS disability measure to litigation is somewhat limited. However it is interesting to note that there is a substantial reduction in worklife expectancy exhibited by individuals who reported have a disability. On average the difference is about 10 years of work life. This is consistent with other studies on disability that a relied on the BLS data. Other factors such as occupation and geographical region do not appear to have much impact on WLE estimates.

FLSA OT report for individuals working in grounds maintenance occupations

In this post, we look at the weekly overtime (OT) hours typically worked by those who work in grounds maintenance occupations.

Many of the employees that work in these jobs are not exempt from FLSA overtime pay and earn 1.5 times pay for hours worked over 40 in a given week.

The tabulations below are based on U.S. BLS survey data. The BLS job title groups are insightful, generally containing more specific job titles with similar knowledge, skills, and abilities (KSA), but can be more broad than a particular company’s job title listing. Also, some companies may have the job title listed here as exempt from FLSA or state OT due to their specific job assignments. The BLS does not make a distinction as to if the job title is exempt or non-exempt from OT.

Occupational Group Title Percent of OT Workers Average Hours of OT 1 out of every 4 (25%) OT workers works at least:
Grounds Maintenance Workers 15.85% 11.2 hours 53.5 hours

U.S. BLS data inddicates that approximately 15.85% of grounds maintenance workers work overtime hours in a given week.  On average, these workers that have FLSA overtime work approximately 11.2 hours a week in OT. The average regular or straight time pay rate of theise workers in the U.S. is approximately 11.90 an hour.  The average FLSA OT rate, not including supplemental pay such as non-discretionary bonus pay is 16.35 an hour.

Source: BLS (CPS March)

Texas healthcare jobs increased by 0.3% from Nov to Dec

healthcare

The health care and social assistance industry gained 4,300 jobs from November 2014 to December 2014. Compared to December 2013, the cumulative number of jobs added in this industry is 57,000, an annual increase of 4.3%.

http://www.tracer2.com/admin/uploadedPublications/2127_TLMR-January_15.pdf

Image source: http://blogs.wsj.com/health/2012/01/06/health-care-sector-adds-jobs-as-overall-employment-picture-looks-healthier/

FLSA OT report for individuals working in truck transportation occupations

In this post, we look at the weekly overtime (OT) hours typically worked by those who work in Truck Transportation.

Many of the employees that work in these jobs are not exempt from FLSA overtime pay and earn 1.5 times pay for hours worked over 40 in a given week.

The tabulations below are based on U.S. BLS survey data. The BLS job title groups are insightful, generally containing more specific job titles with similar knowledge, skills, and abilities (KSA), but can be more broad than a particular company’s job title listing. Also, some companies may have the job title listed here as exempt from FLSA or state OT due to their specific job assignments. The BLS does not make a distinction as to if the job title is exempt or non-exempt from OT.

Occupational Group Title Percent of OT Workers Average Hours of OT 1 out of every 4 (25%) OT workers works at least:
Truck Transportation 47.28% 15 hours 60 hours

Source: BLS (CPS March)

Police and Sheriff’s Patrol Officers experienced the largest increase of job openings nationwide for Nov

Police and Sheriff’s Patrol Officers experienced the largest increase of new openings of all occupations in the US for the month of November with 776 new job openings.

police-officer-clipart-black-and-white-nTXoX7MTB

Month Occupation Total Openings New Openings
Nov-14 Police and Sheriff’s Patrol Officers 16,305 776

Source: BLS

Image Source: http://imgkid.com/police-officer.shtml